Plasma power balance DT fusion power: $P_{fusion} = P_{neutron} + P_{alpha particle}$ (17.6 MeV) (14.1 MeV) Plasma power balance: P_{alpha particle} + P_{auxiliary} = P_{conduction} + P_{radiation} Power gain: **PLASMA** | Condition | Q = P _{fusion} /P _{auxiliary} | |---|---| | "Plasma breakeven" | Q = 1 | | Minimum useful to study bulk plasma heating by fusion alpha particles | Q = 5 | | "Engineering breakeven" | Q ~ 10 | | Minimum requirement for an economic electricity-producing reactor | Q > 20 | | Expected range for attractive commercial reactors | Q ~ 30-50 | | • "Ignition" | Q = ∞ |